
Cours CALCULS MATRICIELS

1 Définitions et opérations sur les matrices

Définitions et généralités

— Analogie avec les systèmes linéaires
On considère le système suivant :


3x1 + 2x2 + x3 = 4 L1

7x1 + 3x3 = 5 L2

2x2 + x3 = 14 L3

(1)

En récupérant chaque coefficient par ligne, on obtient :
➢ 3, 2, 1 ➢ 7, 0, 3 ➢ 0, 2, 1

On peut alors regrouper ces coefficients dans un tableau que l’on appellera matrice .
3 2 1

7 0 3

0 2 1


_ Matrice

Soient l, c ∈ N∗.
On appelle matrice de taille l × c à coefficients dans K un tableau de l lignes et c colonnes de la forme :

A =


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

...

al1 al2 . . . alc


➢ alp est appelé « coefficient de A » à la ligne l et la colonne c.
➢ Tous les alp sont appelés coefficients de la matrice A.

Les matrices de taille l × c à coefficients dans K sont notées Ml,c(K), notée également M = (mij)1≤i≤l
1≤j≤c

- Remarque

Généralement on notera une matrice avec une lettre ma-
juscule et les coefficients de cette dernière seront notés
avec la même lettre minuscule.
Pour mieux comprendre vous pouvez retenir Mligne,colonne

� Exemple

A ∈ Ml,c(K) = (aij)1≤i≤l
1≤j≤c

avec ∀(i, j) ∈ (J1, lK, J1, cK).
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- Remarque

Soit les matrices à coefficients dans K notées Mlc(K)
➢ L’ensemble des matrices Ml,1(K) avec c = 1 donc n’ayant qu’une

colonne sont appelées matrice colonnes , elles représentent en
fait un vecteur de Kn. Ainsi, on notera les coefficients ai au lieu
de ai1 avec i ∈ J1; lK.

➢ L’ensemble des matrices M1,c(K) avec l = 1 donc n’ayant qu’une
ligne sont appelées matrice lignes , elles représentent quant à elles
un vecteur de Kn écrit en ligne et sans virgule entre les com-
posantes. Ainsi, on notera les coefficients ai au lieu de a1i avec
i ∈ J1; cK.

� Exemple

(
0 1 2

) 
0

1

2


à gauche une matrice ligne, à droite une
matrice colonne.

_ Matrices particulières

Soit A ∈ Ml,c(K)

Matrice carrée

A =



1 2 3 10 20

4 5 6 30 40

7 8 9 50 60

10 11 12 70 80

13 14 15 90 100



Dans notre cas, A ∈ M5,5(R).
Ainsi l = c = 5.
On appelle matrice carrée d’ordre n lorsqu’elle possède le même nombre de
lignes et de colonnes.
On note plus simplement A ∈ Mn(K) ou encore A = (aij)1≤i,j≤n.
Dans notre exemple on notera A ∈ M5(R)

Matrice rectangulaire

Dans notre cas, A ∈ Ml,c(K).
Ainsi toutes matrices telle que l ̸= c, autrement dit, qui n’a pas le même nombre de
colonnes que de lignes sont appelées matrices rectangulaires .

A =


a11 a12 . . . a1c

a21 a22 . . . a2c

...
...

...

al1 al2 . . . alc


Matrice nulle

A =


0 0 . . . 0

0 0 . . . 0
...

...
...

0 0 . . . 0


Dans notre cas, A ∈ Ml,c(K).
On remarque que ∀i ∈ J1; lK et ∀j ∈ J1; cK, tous les coefficients aij = 0 sont nuls. On
l’appelle ainsi matrice nulle .
Elle est notée 0l,c(K) ou plus simplement 0.

∀i ∈ J1; lK, ∀j ∈ J1; cK, aij = 0

Propriété
ÉGALITÉ DE DEUX MATRICES

Soient A = (aij)1≤i≤l1
1≤j≤c1

∈ Ml1,c1(K) et B = (bij)1≤i≤l2
1≤j≤c2

∈ Ml2,c2(K), avec (l1, c1, l2, c2) ∈ (N∗)4.

On dit que deux matrices sont égales lorsque :
➢ Le nombre de lignes de A est égal au nombre de lignes de B ⇒ l1 = l2.
➢ Le nombre de colonnes de A est égal au nombre de colonnes de B ⇒ c1 = c2.
➢ Les coefficients des deux matrices sont égaux un à un.

∀i ∈ J1; lK, ∀j ∈ J1; cK, aij = bij

Ainsi, on note A = B.
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Opérations simples sur les matrices

— L’addition de deux matrices

_ Opération d’addition

Soient A = (aij)1≤i≤l
1≤j≤c

∈ Ml,c(K) et B = (bij)1≤i≤l
1≤j≤c

∈ Ml,c(K), avec (l, c) ∈ (N∗)2.

Pour additionner deux matrices , il suffit de faire la somme des coefficients un à un.
La somme de deux matrices est donnée par :

A + B = (aij + bij)1≤i≤l
1≤j≤c


a11 + b11 . . . a1c + b1c

a21 + b21 . . . a2c + b2c

...
...

al1 + bl1 . . . alc + blc



-
Conditions pour additionner deux matrices
Il faut que les matrices A et B soient exactement de la même taille pour pouvoir additionner ces dernières entre
elles.

� Exemple


1 2 3

4 5 6

7 8 9

10 11 12

 +


2 1 0

−1 3 2

4 −2 1

0 0 5

 =


1 + 2 2 + 1 3 + 0

4 + (−1) 5 + 3 6 + 2

7 + 4 8 + (−2) 9 + 1

10 + 0 11 + 0 12 + 5

 =


3 3 3

3 8 8

11 6 10

10 11 17



— Le produit par un scalaire

_ Produit par un scalaire

Soit A = (aij)1≤i≤l
1≤j≤c

∈ Ml,c(K) et λ ∈ K.

Le produit de A par λ est donné par :

λA = (λaij)1≤i≤l
1≤j≤c

Le résultat du produit d’une matrice par un scalaire doit être une matrice de même taille
que A.


λa11 λa12 . . . λa1c

λa21 λa22 . . . λa2c

...
...

...

λal1 λal2 . . . λalc



� Exemple

3 ×


1 2 3

4 5 6

7 8 9

10 11 12

 =


3 × 1 3 × 2 3 × 3

3 × 4 3 × 5 3 × 6

3 × 7 3 × 8 3 × 9

3 × 10 3 × 11 3 × 12

 =


3 6 9

12 15 18

21 24 27

30 33 36


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Propriété
ADDITION DE MATRICES

Soient A, B, C ∈ Mlc(K).

1 Commutativité A + B = B + A

2 Associativité A + (B + C) = (A + B) + C

3 Élément neutre 0 + A = A

4 Élément absorbant A + (−A) = 0

Propriété
PRODUIT PAR UN SCALAIRE

Soient A ∈ Mlc(K) et λ, µ ∈ K.

1 Commutativité λA = Aλ

2 Associativité λ(Aµ) = (λA)µ

3 Élément neutre 1A = A

Propriété
DISTRIBUTIVITÉ ADDITION / PRODUIT PAR UN SCALAIRE

Soient A, B ∈ Mlc(K) et λ, µ ∈ K

λ(A + B) = λA + λB A(λ + µ) = Aλ + Aµ

- Remarque

➢ 0 représente la matrice nulle.
➢ Les opérations définies sur Mlc(K) font de lui un espace vectoriel.

Produit de deux matrices

_ Produit matriciel

Soient A = (aij)1≤i≤l1
1≤j≤c1

∈ Ml1,c1(K) et B = (bij)1≤i≤l2
1≤j≤c2

∈ Ml2,c2(K), avec (l1, c1, l2, c2) ∈ (N∗)4.

On appelle produit de matrices de A par B la matrice C = (cij)1≤i≤l1
1≤j≤c2

∈ Ml1,c2 .

Les coefficients de la matrice résultante C sont donnés par ∀i ∈ J1; l1K, ∀j ∈ J1; c2K :

cij = ai1b1j + ai2b2j + . . . + ail1bc2j =
p∑

k=1
aikbkj

Ainsi on note C = AB.

- Remarque

Pour pouvoir effectuer le produit de A par B, il faut que le nombre de colonnes c1 de A soit égal au nombre de lignes
l2 de B.
Autrement dit, c1 = l2. Vous pouvez garder en tête l’application suivante :

Ml1,c1(K) × Ml2,c2(K) −→ Ml1,c2

A B 7−→ AB

Le produit AB peut exister sans que BA existe.

➢ Le produit n’est pas forcément commutatif, la plupart des cas, on aura AB ̸= BA
➢ Si AB = 0, cela n’implique pas forcément que l’une des matrice soit nulle.
➢ Si AB = AC, cela n’implique pas forcément que B = C.

Université Le Havre Normandie · Département Informatique · Page 4



Cours
Killian REINE L1 INFORMATIQUE

� Exemple

Soient les matrices A et B :

A =


1 2 3

4 5 6

7 8 9

 et B =


9 8 7

6 5 4

3 2 1


Le produit C = A × B est défini par :

Cij =
∑3

k=1 AikBkj

Calculons chaque élément de C :

C =


C11 C12 C13

C21 C22 C23

C31 C32 C33


avec

C11 = 1 × 9 + 2 × 6 + 3 × 3 = 9 + 12 + 9 = 30
C12 = 1 × 8 + 2 × 5 + 3 × 2 = 8 + 10 + 6 = 24
C13 = 1 × 7 + 2 × 4 + 3 × 1 = 7 + 8 + 3 = 18
C21 = 4 × 9 + 5 × 6 + 6 × 3 = 36 + 30 + 18 = 84
C22 = 4 × 8 + 5 × 5 + 6 × 2 = 32 + 25 + 12 = 69
C23 = 4 × 7 + 5 × 4 + 6 × 1 = 28 + 20 + 6 = 54
C31 = 7 × 9 + 8 × 6 + 9 × 3 = 63 + 48 + 27 = 138
C32 = 7 × 8 + 8 × 5 + 9 × 2 = 56 + 40 + 18 = 114
C33 = 7 × 7 + 8 × 4 + 9 × 1 = 49 + 32 + 9 = 90

Ainsi,

C =


30 24 18

84 69 54

138 114 90



- Remarque

La méthode sera expliquée en détail en présentiel.

Propriété
PRODUIT MATRICIEL

Soient (A, A1, A2) ∈ Mn,p(K)3 et (B, B1, B2) ∈ Mp,q(K)3, C ∈ Mq,r(K), avec (q, r) ∈ (N∗)2 et λ ∈ K

1 Commutatif, C(AB) = (CA)B

2 Distributivité
(A1 + A2)B = A1B + A2B (B1 + B2)A = B1A + B2A

3 Produit et multiplication par un scalaire distributifs (λA)B = A(λB) = λ(AB)
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2 Matrices particulières et inverse d’une matrice carrée

Matrices particulières

_ Diagonale, Identité

Soit A = (aij)1≤i,j≤n ∈ Mn(K).
Puisque A ∈ Mn(K) alors A est une matrice carrée.

➢ Les coefficients diagonales de la matrice A sont les coefficients notés aii, ∀i ∈ J1; nK.

A =


a11 0 . . . 0

0 a22 . . . 0
...

...
...

0 0 . . . alc



Dans notre cas, A ∈ Ml,c(K).
On remarque ici que tous les coefficients de la matrices sont nuls. On note ∀i ̸= j,
aij = 0 avec (i, j) ∈ J1; nK2.
On l’appelle alors matrice diagonale .
Ce n’est pas parce que un des coefficients de la matrice est nulle qu’elle n’est
pas diagonale.

Dans notre cas, A ∈ Ml,c(K).
On remarque ici que tous les coefficients de la matrices sont nuls. On note ∀i ̸= j,
aij = 0 avec (i, j) ∈ J1; nK2.
On l’appelle alors matrice identité , plus souvent notée In. Lorsque les coefficients
de la diagonale sont égaux à 1 et tous les autres à 0.

A =


1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1


Les matrices diagonales et identités n’ont de sens uniquement en présence de matrices carrées.

- Remarque

Soit i, j deux entiers, on définit le symbole de Kronecker par :

δij =
{

1 si i = j

0 sinon

On note In = (δij)1≤i,j≤n ∈ Mn(K), la matrice identité.

Propriété
IDENTITÉ

Soient A, B ∈ Mn(K),

1 Neutre AIn = A et InA = A

2 Si AB = BA alors A = In

_ Puissance d’une matrice

Soit A ∈ Mn(K), on définit la puissance d’une matrice par :

A0 = In Ap = AAp−1, ∀p ∈ N∗

Vous savez déjà que Ap = AAA . . . A︸ ︷︷ ︸
p fois
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_ Matrice transposée, matrice adjointe

Matrice transposée

Soit A = (aij)1≤i≤l
1≤j≤c

∈ Ml,c(K).

On appelle matrice transposée la matrice de Ml,c(K) notée At telle que ∀i ∈ J1; lK et ∀j ∈ J1; cK,

(at)ij = aji

Matrice adjointe

Soit A = (aij)1≤i≤l
1≤j≤c

∈ Ml,c(K).

On appelle matrice adjointe la matrice de Ml,c(K) notée A∗ telle que ∀i ∈ J1; lK et ∀j ∈ J1; cK,

(a∗)ij = aji

Lorsque K = R, A∗ = At.
La taille de At et de A∗ est la même que celle de A si l = c, sinon de taille c × l.

� Exemple

A =


1 + 2i −i 3

4i 5 − i 2 + 3i

−2 i 1 − i


Matrice transposée

At =


1 + 2i 4i −2

−i 5 − i i

3 2 + 3i 1 − i



Matrice adjointe

A∗ =


1 − 2i −4i −2

i 5 + i −i

3 2 − 3i 1 + i



Propriété
TRANSPOSÉE ET ADJOINTE

Soient A, B ∈ Mlc(K) avec l, c ∈ N × N∗

1 (A∗)∗ = A 2 (At)t = A 3 (AB)∗ = A∗B∗ 4 (AB)t = AtBt

Inverse d’une matrice carrée

-
La notion d’inverse d’une matrice n’est valable que sur des matrices carrées.
Toutes les matrices carrées n’admettent pas forcément d’inverse.

- Remarque

Soit a ∈ K∗, alors il existe un inverse noté 1
a , que l’on peut aussi noter a−1 qui vérifie :

aa−1 = a−1 = 1

Le nombre 1 ∈ K est appelé élément neutre pour la multiplication . Lorsque l’on parle de multiplication de matrices, l’élément
neutre de Mn(K) est la matrice identité In.
Autrement dit, en terme matriciel l’équivalent de 1 pour la multiplication est In.
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_ Matrice inversible, matrice inverse

Soit A ∈ Mn(K).
La matrice A est dite inversible si ∃B ∈ Mn(K) tel que :

AB = BA = In

Si B existe alors il est unique. Et on l’appelle inverse de A . On note A−1.
L’ensemble des matrices inversibles est noté GLn(K) et appelé groupe linéaire de Mn(K).
La notion d’inverse d’une matrice n’a pas de sens si on ne parle pas de matrice carrée.

Á Polynômes appliquées aux matrices

Soit n ∈ N∗, p ∈ N et P ∈ K[X] un polynôme donné par :

P (X) =
p∑

k=0
akXk

où ∀k ∈ J0; pK, ak ∈ K
(cette définition a été vue lors du chapitre précédent...)
∀A ∈ Mn(K), le polynôme P (A) est définie par :

P (A) =
p∑

k=0
akAk = a0In + a1A + a2A2 + . . . + apAp

� Exemple

Soit A =

1 2

0 3


On cherche à évaluer le polynôme : P (X) = X2 − 2X + 3I en A.

» Calculs par étapes

A2 = A · A =

1 2

0 3

 ·

1 2

0 3

 =

1 8

0 9

 − 2A =

−2 −4

0 −6

 3I =

3 0

0 3


» Calcul final

P (A) = A2 − 2A + 3I

=

1 8

0 9

 +

−2 −4

0 −6

 +

3 0

0 3

 =

2 4

0 6


» Résultat final :

P (A) =

2 4

0 6



- Remarque

Soient A, B ∈ Mn(K)
Pour montrer que A est inversible, il suffit de montrer que AB = In ou que BA = In.
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3 Déterminant d’une matrice carrée

Déterminant

_ Déterminant d’une matrice

Déterminant d’une matrice de M2(K)

Soit A =

a b

c d

 ∈ M2(K).

On appelle déterminant de la matrice A, l’élément de K noté det(A) et définit par :

det(A) =

∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ = ad − cb

Déterminant d’une matrice de Mn(K)

Soit A = (aij)1≤i,j≤n ∈ Mn(K) avec n ≥ 3.
On appelle déterminant de la matrice A, noté det(A) où∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣
L’élément de K définit par :

➢ à i0 ∈ J1; nK fixé, on a det(A) =
n∑

j=1
(−1)i0+jai0jdet(Ai0j) (1)

➢ à j0 ∈ J1; nK fixé, on a det(A) =
n∑

i=1
(−1)i+j0aij0det(Aij0) (2)

où ∀(i, j) ∈ J1; nK2, Aij ∈ Mn−1(K) est la matrice carrée déduite de A en supprimant la i-ième ligne et la j-ième colonne.

- Remarque

Les deux formules précédantes sont équivalentes selon le développement de votre déterminant, en ligne ou en colonne.

Propriété
DÉTERMINANT

Soit A ∈ Mn(K)

1 Si une ligne (resp. colonne) est remplie de 0 alors det(A) = 0

2 Si deux lignes (resp. colonnes) sont égales alors det(A) = 0

3 det(At) = det(A)

4 det(A∗) = det(A)
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Á Opérations élémentaires

Soit A ∈ Mn(K)
➢ Si on échange deux lignes (resp. colonnes) le déterminant de la matrice obtenue sera égal à −det(A)
➢ Si on multiplie par un réel λ une ligne (resp. une colonne), le déterminant de la matrice obtenue sera égal à λdet(A).
➢ Si on ajoute une combinaison linéaire d’une ligne (resp. colonne) entre elles, la valeur du déterminant reste inchan-

gée.

� Méthode

Calculer le déterminant d’une matrice

1 Choisir une ligne/colonne qui a le plus de 0.

2 Si possible, utiliser les opérations élémentaires ci dessus pour augmenter le nombre de 0.

3 Développer le déterminant et conclure.

� Exemple

Soit A =


2 −1 3

0 4 1

−2 5 0


» Objectif
Calculer det(A) par développement selon la première ligne.

» Calculs par étapes
On utilise la formule :

det(A) = a11

∣∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣∣ − a12

∣∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣∣ + a13

∣∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣∣
Application directe :

det(A) = 2 ·

∣∣∣∣∣∣4 1

5 0

∣∣∣∣∣∣ − (−1) ·

∣∣∣∣∣∣ 0 1

−2 0

∣∣∣∣∣∣ + 3 ·

∣∣∣∣∣∣ 0 4

−2 5

∣∣∣∣∣∣
= 2 · (4 · 0 − 1 · 5) + 1 · (0 · 0 − 1 · (−2)) + 3 · (0 · 5 − 4 · (−2))
= 2 · (−5) + 2 + 3 · 8
= −10 + 2 + 24
= 16

» Résultat final :

det(A) = 16
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Propriété
DÉTERMINANT D’UNE MATRICE

Soient (A, B) ∈ Mn(K)2, alors :

1 det(AB) = det(A)det(B)

2 det(In) = 1

3 A est inversible si det(A) ̸= 0

4 Si A inversible : det(A−1) = 1
det(A)

Calculer l’inverse d’une matrice

_ Matrice de cofacteurs – comatrice

Soit A ∈ Mn(K) avec n ≥ 2.
On appelle comatrice de A, l’élément de Mn(K) noté com(A) de coefficients :

(com(A))ij = (−1)i+jdet(Aij)

où, ∀i, j ∈ J1; nK, Aij ∈ Mn−1(K) est la matrice carrée déduite de A en supprimant la i-ième ligne et la j-ième colonne.

� Exemple

Soit A =


2 −1 3

0 4 1

−2 5 0


» Objectif
Calculer la comatrice de A, notée Com(A), c’est-à-dire la matrice des cofacteurs de A.

» Calculs par cofacteurs
Chaque cofacteur Cij est défini par Cij = (−1)i+j · Mij , où Mij est le mineur associé.

C11 = +1 ·

∣∣∣∣∣∣4 1

5 0

∣∣∣∣∣∣ = 4 · 0 − 1 · 5 = −5

C12 = −1 ·

∣∣∣∣∣∣ 0 1

−2 0

∣∣∣∣∣∣ = −(0 · 0 − 1 · (−2)) = −2

C13 = +1 ·

∣∣∣∣∣∣ 0 4

−2 5

∣∣∣∣∣∣ = 0 · 5 − 4 · (−2) = 8

C21 = −1 ·

∣∣∣∣∣∣−1 3

5 0

∣∣∣∣∣∣ = −(−1 · 0 − 3 · 5) = −(−15) = 15

. . .

» Comatrice de A

Com(A) =


−5 −2 8

15 6 −8

−13 −2 8


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Á Formule de l’inverse d’une matrice

Soit A ∈ Mn(K) telle que det(A) ̸= 0

A−1 = 1
det(A) (com(A))t

� Méthode

Calculer l’inverse d’une matrice

1 Calculer le déterminant de la matrice A.

2 Vérifier que det(A) ̸= 0.

3 Calculer la comatrice com(A), sans oublier de changer les signes des coefficients 1/2.

4 Calculer

A−1 = 1
det(A) (com(A))t

5 Conclure.
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