@ CALCULS MATRICIELS

@ Définitions et opérations sur les matrices

| Définitions et généralités

— Analogie avec les systémes linéaires
On considére le systéme suivant :

3x14+2x0+23=4 Ly
7r1 + 325 =5 Lo (1)
200 +x3 =14 Ls

En récupérant chaque coefficient par ligne, on obtient :
> 3,2,1 > 7,0,3 > 0,2,1

On peut alors regrouper ces coefficients dans un tableau que I'on appellera .

3 2 1
7T 0 3
0 2 1

Soient [, c € N*.
On appelle | matrice | de [ taille | I x ¢ & coefficients dans K un tableau de [ lignes et ¢ colonnes de la forme :

a1p Qai2 o Qe

a21 Aa22 N T
A =

ap  ai ... A

> q, est appelé « coefficient de A » alaligne [ et la colonne c.
> Tous les a;;, sont appelés coefficients de la matrice A.

Les matrices de taille I x ¢ & coefficients dans K sont notées M, .(K), notée également M = (m;;)1<i<i

1<5<e
. J
O Remarque
Q Exemple
Généralement on notera une matrice avec une lettre ma-
juscule et les coefficients de cette derniére seront notés A€ Myo(K) = (a5;)1<i<i avec V(i, 5) € ([1,1], [1, ])-
avec la méme lettre minuscule. ' 1<5<e
Pour mieux comprendre vous pouvez retenir Myigne cotonne
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O Remarque

Q Exemple

Soit les matrices a coefficients dans K notées M, (K) —

> Lensemble des matrices M, ;(K) avec ¢ = 1 donc n‘ayant qu’une
colonne sont appelées matrice colonnes , elles représentent en
fait un vecteur de K”. Ainsi, on notera les coefficients a; au lieu (0 1 2)
de a;1 avecs € [1;1].

> Lensemble des matrices M, .(K) avec [ = 1 donc n'ayant qu'une 2
ligne sont appelées maitrice lignes , elles représentent quant a elles
un vecteur de K™ écrit en ligne et sans virgule entre les com-
posantes. Ainsi, on notera les coefficients a; au lieu de a;; avec
i€ [1;].

—_

a gauche une matrice ligne, a droite une
matrice colonne.
N .

R# Matrices particuliéres

Soit A € M, .(K)

Matrice carrée

Dans notre cas, A € M; 5(R).
4 5 6 30 40 Ainsil = ¢ = 5.
On appelle [matrice carrée d’ordre n] lorsqu’elle posséde le méme nombre de
lignes et de colonnes.

10 11 12 70 80 On note plus simplement A € M,,(K) ou encore A = (a;;)1<i,j<n-

Dans notre exemple on notera A € M;(R)

13 14 15 90 100

Matrice rectangulaire

ap; a2 ... Qe
Dans notre cas, A € M, .(K). sy a2 as
Ainsi toutes matrices telle que [ # ¢, autrement dit, qui n’a pas le méme nombre de A= ¢
colonnes que de lignes sont appelées [matrices rectangulaires ]

arq a2 N Qalc

Matrice nulle

Dans notre cas, A € M, .(K).
On remarque que Vi € [1;{] et Vj € [1;¢], tous les coefficients a;; = 0 sont nuls. On

VI 'appelle ainsi | matrice nulle .

Elle est notée 0; .(K) ou plus simplement 0.

o
o
o O

00 ... 0 Vie [1;1], V) € [Lie], ai; =0

J/

Propriété 7 )
EGALITE DE DEUX MATRICES

Soient A = (aij)1§i§ll S Mll,cl (K)etB= (bij)1§i§l2 S Mlz,cZ (K), avec (I1,¢1,l2,c0) € (N*)4.

1<j<c1 1<j<ca
On dit que deux matrices sont lorsque :
> Le nombre de lignes de A est égal au nombre de lignes de B = [, = Is.

> Le nombre de colonnes de A est égal au nombre de colonnes de B = ¢; = co.
> Les coefficients des deux matrices sont égaux un a un.
Vi € [[1;l]], Vj (S [[1;6]], A5 = bij

Ainsi, on note A = B.
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| Opérations simples sur les matrices

Laddition de deux matrices

RB Opération d’addition

Soient A = (a”)f%éi S Ml,c(K) etB = (sz)%ggélc € Ml’c(K), avec (l,c) S (N*)2. ayy + biq a1e + bie
Pour [ additionner deux matrices |, il suffit de faire la somme des coefficients un a un. az1 + bay a2c + bac
La somme de deux matrices est donnée par :
A+ B=(a;; +b;;)1<;
+ (aij + 13)11§]§i an + b e -+ e
|\

Conditions pour additionner deux matrices
Il faut que les matrices A et B soient exactement de la méme taille pour pouvoir additionner ces derniéres entre

elles.
~ Q Exemple
1 2 3 2 1 0 1+2 241 340 3 3 3
4 5 6 -1 3 2| [4+(-1) 5+3 6+2| |3 8 8
7 8 9 4 -2 1 T4+4  8+4(-2) 9+1 11 6 10
10 11 12 0 0 5 1040 1140 1245 10 11 17

-

Le produit par un scalaire

RB Produit par un scalaire

Soit A = (aij) 1<i<l S Ml,c(K) et A e K.
: 1<j<c ) a1 Aaqs Aaic
Le [ produit de A par A | est donné par :
)\(121 )\0,22 )\CLQC
M = (Aaij) 1<i<i
1<j<e
Le résultat du produit d’'une matrice par un scalaire doit étre une matrice de méme taille Aa;r Aap Aage
que A.
. J
_ Q Exemple
1 2 3 3x1 3x2 3x3 3 6 9
5 4 5 6 3x4 3x5 3x6 12 15 18
X = =
7T 8 9 3x7 3x8 3Ix9 21 24 27
10 11 12 3x10 3 x11 3 x12 30 33 36
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Propriété

PRODUIT PAR UN SCALAIRE
Soient 4, B, C € M;.(K).

Commutativité A+ B =B+ A

B Associativité A+ (B+C) = (A+B)+C
E Eiémentneutre 0+ A= 4

B Eiément absorbant A + (—4) =0

Soient A € M;.(K) et A\, n € K.
Commutativité A4 = AX
B Associativité \(Ay) = (A A)u
Elément neutre 14 = A

Propriété

DISTRIBUTIVITE ADDITION / PRODUIT PAR UN SCALAIRE
Soient A, B € M;.(K) et \,u e K

AMA+ B)=XA+ B AN+ p) = AN+ Ap

© Remarque

> ( représente la matrice nulle.
> Les opérations définies sur M,.(K) font de lui un espace vectoriel.

| Produit de deux matrices

AB Produit matriciel

Soient A = (aij) 1<i<t; € My e, (K)etB= (bij) 1<i<ls € Mig.co (K), avec (I1,¢1,1la,c2) € (N*)4.
1<j<c1 1<j<e2

On appelle | produit de mairices | de A par B la matrice C = (ci;)1<i<t, € Mi, c,-

1<j<e2

Les coefficients de la matrice résultante C sont donnés par Vi € [1;11], Vj € [1;¢2] :

P
cij = a;1b1j + asbay + ..+ @iy bey = kzlaikbkj

Ainsi on note C = AB.

. J
O Remarque

Pour pouvoir effectuer le produit de A par 3, il faut que le nombre de colonnes c; de A soit égal au nombre de lignes
lo de B.

Autrement dit, c; = [5. Vous pouvez garder en téte I'application suivante :

Mll,cl (K) X Mlz,cz (K) — Mll,cz
A B — AB

Le produit AB peut exister sans que BA existe.

> Le produit n’est pas forcément commutatif, la plupart des cas, on aura AB # BA
> Si AB = 0, cela n'implique pas forcément que I'une des matrice soit nulle.
> Si AB = AC, cela n'implique pas forcément que B = C.
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Q Exemple

Soient les matrices A et B :

1 2 3 9 8 7
A=|4 5 6 et B=16 5 4
7 8 9 3 2 1

Le produit C = A x B est défini par :

Cij = Yopey AirBr;

Calculons chaque élément de C :

Cu Ci2 Ci3
C=|[Cn Oy Co
Cs1 Cs2 Cs3
avec
Ci1=1x94+2x64+3%x3=94+12+9=230
Cio=1x8+2x54+3x2=84+10+6=24
Cia=1x74+2x44+3x1=7+8+3=18
Cop =4x9+5x6+6x3=36+30+18=284
Coy=4x8+5x5+6x2=32+25+12=1069
Cos =4 XT+5x4+6x1=28+20+6=54
C31=7Tx94+8x64+9x3=63+48+27=138
C3o=Tx84+8x54+9%x2=56+40+18=114
C33=TxT7T+8x44+9%x1=494+32+9=090
Ainsi,
30 24 18
C=18 69 54
138 114 90
N /

© Remarque

La méthode sera expliquée en détail en présentiel.

Propriété
PRODUIT MATRICIEL

Soient (A, Ay, As) € M,, ,(K)3 et (B, By, Bs) € M, ,(K)3, C € M,..(K), avec (¢,7) € (N*)? et A e K
Commutatif, C(AB) = (CA)B
E Distributivité
(A1 4+ A2)B = A B+ A8 (By + Ba)A =Bi A+ B A

Produit et multiplication par un scalaire distributifs (\A)B = A(AB) = \(AB)
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@ Matrices particuliéres et inverse d’'une matrice carrée

| Matrices particulieres
Rl Diagonale, Identité
Soit A = (aij)lgidgn S Mn(K)

Puisque A € M,,(K) alors A est une matrice carrée.
> Les coefficients diagonales de la matrice A sont les coefficients notés a;;, Vi € [1;n].

ay 0 ... 0 Dans notre cas, A € M, .(K).
On remarque ici que tous les coefficients de la matrices sont nuls. On note Vi # j,
0 a2 ... 0 a;; = 0 avec (i,5) € [1;n]>
A= , - -
On l'appelle alors | matrice diagonale |
Ce n’est pas parce que un des coefficients de la matrice est nulle qu’elle n’est
0 0 .. ae pas diagonale.
Dans notre cas, A € M, .(K). 10 ... 0
On remarque ici que tous les coefficients de la matrices sont nuls. On note Vi # j, 01 ... 0
a;; = 0 avec (i, 5) € [1;n]>. A=
On l'appelle alors [matrice identité ] plus souvent notée I,,. Lorsque les coefficients
de la diagonale sont égaux a 1 et tous les autres a 0. 00 ... 1

Les matrices diagonales et identités n’ont de sens uniquement en présence de matrices carrées.

. J
O Remarque

Soit 7, j deux entiers, on définit le [symbole de Kronecker] par :

5. — 1 sii=j
10 sinon

On note I,, = (8;j)1<i,j<n € M, (K), la matrice identité.

Propriété

IDENTITE
Soient A, B € M,,(K),

Neutre Al, = Aet[,A= A
SiAB = BAalors A=1,

R Puissance d’une matrice

Soit A € M,,(K), on définit la | puissance d’une matrice | par :
A =1, AP = AAP~L, ¥p € N*
Vous savez déjaque A? = AAA... A
=
p fois
. J
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Rl Matrice transposée, matrice adjointe

Matrice transposée

Soit A = (aij)1<i<i € M (K).

1<52e
On appelle | matrice transposée | la matrice de M, .(K) notée A’ telle que Vi € [1;1] et Vj € [1;¢],

(@)ij = aji

Matrice adjointe

Soit A = (aij)1<i<i € My (K).

1<5<c
On appelle | matrice adjointe | la matrice de M; .(K) notée A* telle que Vi € [1;1] et Vj € [1;c],

(@%)ij = @ji
Lorsque K = R, A* = A"

La taille de A’ et de A* est la méme que celle de A si [ = ¢, sinon de taille ¢ x [.
.

~ QExemple
1+2¢ —1 3
A= 43 5—1 243
—2 7 1—2
Matrice transposée Matrice adjointe
1424 41 -2 1—2 —4q —2
At=| —  5—i A = 5+i  —i
3 243 1—4 3 2-3 144
\_ J
Propriété

TRANSPOSEE ET ADJOINTE
Soient A, B € M;.(K) avec [,c € N x N*

B (1) =4 2 NEGEE! (AB)* = A*B*

| Inverse d’une matrice carrée

Soit a € K*, alors il existe un inverse noté %, que I'on peut aussi noter a=! qui vérifie :

La notion d’inverse d’'une matrice n’est valable que sur des matrices carrées.
Toutes les matrices carrées n’admettent pas forcément d’inverse.

Le nombre 1 € K est appelé élément neutre pour la multiplication . Lorsque I'on parle de multiplication de matrices, I'élément
neutre de M,,(K) est la matrice identité 7,,.
Autrement dit, en terme matriciel I'’équivalent de 1 pour la multiplication est I,,.
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RB Matrice inversible, matrice inverse

Soit A € M, (K).
La matrice A est dite si 3B € M, (K) tel que :
AB=BA=1,

Si B existe alors il est unique. Et on I'appelle inverse de A . On note A~1.
Lensemble des matrices inversibles est noté GL,,(K) et appelé [groupe Iinéaire] de M, (K).
La notion d’inverse d’une matrice n’a pas de sens si on ne parle pas de matrice carrée.

B Polynémes appliquées aux matrices

Soitn € N*, p € Net P € K[X] un polynéme donné par :

P(X) =

p
(Zka

k=0

ou Yk € [0;p], ar € K
(cette définition a été vue lors du chapitre précédent...)
VA € M, (K), le polyndbme P(A) est définie par :

p
P(A) = arAF = apl, + a1 A+ ap A%+ ...+ apA?
k=0
4
Q Exemple
. 2
Soit A =
0 3
On cherche a évaluer le polyndme : P(X) = X2 — 2X + 31 en A.
» Calculs par étapes
1 2 1 2 1 8 -2 —4 3 0
A2=A.- A= . = —2A = 3l =
0 3 0 3 0 9 0 —6 0 3
» Calcul final
P(A) = A? - 2A+3I
1 8 -2 -4 3 0 2 4
= _|_ —

09 0 —6 0 3 0 6

» Résultat final :
2 4
P(A) =
0 6
/

Remarque

Soient A, B € M,,(K)
Pour montrer que A est inversible, il suffit de montrer que AB = I,, ou que BA = I,,.
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€@ Déterminant d’une matrice carrée

| Déterminant

A Déterminant d’une matrice

Déterminant d’'une matrice de M5 (K)
. a b
Soit A = € Ms(K).
c d
On appelle de la matrice A, I'élément de K noté det(.A) et définit par :
a b
det(A) = =ad—cb
c d

Déterminant d’'une matrice de M,, (K)
Soit A = (aij)1§i7j§n € M, (K) avec n > 3.
On appelle de la matrice A, noté det(A) ot

ailp a2 ... Qip

a21 a22 a2n

anl Ap2 ... Gpn
Lélément de K définit par :
> aip € [1;n] fixé, on a det(A) = Y (—1)Ha; ;det(A;,;) (1)

j=1
> ajo € [1;n] fixé, onadet(A) = Y (—1)"Toa,; det(A;j,) 2
=1

ou v(i, ) € [1;n]?, Ai; € M, —1(K) est la matrice carrée déduite de .A en supprimant la i-iéme ligne et la j-iéme colonne.

© Remarque

Les deux formules précédantes sont équivalentes selon le développement de votre déterminant, en ligne ou en colonne.

Propriété 5
DETERMINANT

Soit A € M,,(K)
Si une ligne (resp. colonne) est remplie de 0 alors det(A) = 0
E Si deux lignes (resp. colonnes) sont égales alors det(A) = 0
det(A?) = det(A)
B det(47) = det(A)
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B Opérations élémentaires

Soit A € M, (K)

> Si on échange deux lignes (resp. colonnes) le déterminant de la matrice obtenue sera égal a —det(A)

> Si on multiplie par un réel X\ une ligne (resp. une colonne), le déterminant de la matrice obtenue sera égal a \det(.A).

> Si on ajoute une combinaison linéaire d’une ligne (resp. colonne) entre elles, la valeur du déterminant reste inchan-
gée.

@ Méthode

Calculer le déterminant d’une matrice

n Choaisir une ligne/colonne qui a le plus de 0.

E Si possible, utiliser les opérations élémentaires ci dessus pour augmenter le nombre de 0.

=1 Développer le déterminant et conclure.

Q Exemple

» Objectif
Calculer det(A) par développement selon la premiére ligne.

» Calculs par étapes
On utilise la formule :

a a a a a a
det(4) = a1y 22 Q23| a1 21 G23 +ags 21 (22
az2 ass az1 ass az1  as2
Application directe :
4 1 0 1 0 4
det(4) =2- —(-1)- +3.
5 0 -2 0 -2 5

=2.(4-0-1-5)4+1-(0-0—1-(=2))+3-(0-5—4-(-2))
=2.(-5)+2+3-8
=—-104+2+24
=16
» Résultat final :

det(A) = 16
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Propriété

DETERMINANT D’UNE MATRICE

Soient (A, B) € M,,(K)?, alors :

det(AB) = det(A)det(B) A est inversible si det(A) # 0

1
det(A)

B de,) =1 B si Ainversible : det(A™!) =

| Calculer I'inverse d’une matrice

A# Matrice de cofacteurs — comatrice

Soit A € M,,(K) avec n > 2.
On appelle [ comatrice | de A, I'élément de M., (KK) noté com(A) de coefficients

(com(A))i; = (=1)" det(Ay;)

ou, Vi, j € [1;n], A;; € M,,_1(K) est la matrice carrée déduite de .4 en supprimant la i-iéme ligne et la j-iéme colonne.

~ © Exemple

SoitA=1| 0 4 1

» Objectif
Calculer la comatrice de A, notée Com(A), c’est-a-dire la matrice des cofacteurs de A.

» Calculs par cofacteurs o
Chaque cofacteur C;; est défini par C;; = (—1)"*7 - M;;, ou M;; est le mineur associé.

4 1
Cip=+1- =4-0—-1-5=-5
5 0
0 1
Cra=—1- =—(0-0-1-(-2)) =—2
-2 0
0 4
Ciz = +1- =0-5—4-(-2)=8
-2 5
-1 3
Cyp = —1- =—(-1-0-3-5)=—(-15) =15
5 0
» Comatrice de A
-5 -2 8
ComA) =15 6 -8
—-13 -2 8
N\, /
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B Formule de I'inverse d’une matrice

Al =

Soit A € M, (K) telle que det(A) # 0

(com(A))*

1
det(A)

O Méthode

Calculer I'inverse d’une matrice

n Calculer le déterminant de la matrice A.

1| Vérifier que det(A) # 0.

B Calculer la comatrice com(A), sans oublier de changer les signes des coefficients 1/2.
"1 calculer

A7l = el (com(A))*t

-1 Conclure.
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